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Abstract—Real-time object detection in sterile compounding
areas is a complex task in a difficult environment that can
yield impactful results. In this paper we outline a method using
computer vision on a data set of images from sterile compounding
areas and achieved and overall mean average precision (mAP) of
90%. Our method can be added to typical verification methods
to improve or enhance the safety of sterile compounding by
detecting objects such as IV bags, vials, and syringes.

Index Terms—machine learning, deep learning, sterile com-
pounding

I. INTRODUCTION

Intravenous medications are prepared in hospital pharmacies
in highly regulated, controlled, sterile compounding environ-
ments. Preserving the sterility and stability of admixtures
in these rooms requires minimizing disturbances to airflow,
which can be achieved by limiting the frequency of entering
and exiting the room.

Acute care environments include all areas served within
a hospital’s scope of practice, including emergency rooms,
intensive care units, general medicine services, and some
ambulatory services provided within the hospital premises.
Pharmacists operating in acute care environments are respon-
sible for verifying all doses that leave the pharmacy, which
includes drugs prepared in sterile compounding suites as well.
Many technologies have been created to aid in verifying
sterile compounded products without disturbing the relative
sterility in the room, including gravimetric analysis and remote
cameras.

The current standard evaluation methods are gravimetric
analysis, barcode scanning, and remote viewing. Although
these methods are accurate, their combination with current
practices and workarounds can still result in compounding
errors.

In this project we set out to answer two major questions.

1) Can computer vision and object detection provide an
additional safety check without inserting an individual
into the sterile compounding suite?

2) Can the model be trained not only to recognize IV bags,
syringes, and vials but also the drug that was likely in
the vial and the diluent in the bag?

We set out to answer these in a phased approach:
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o Phase I: Can we classify the images as vial, bag, or
syringe?

o Phase II: Can we additionally label the IV bags according
to their diluent, i.e. dextrose, sodium chloride, lactacted
ringers, etc.?

o Phase III: Can we also classify the vials as to the drug
that it contains?

II. RELATED WORK

A review of the current literature reveals several applica-
tions of computer vision in healthcare, including its use in
sterile compounding environments. Some of those applications
involve detecting object movements or monitoring sterile com-
pounding techniques. [1], [2]

SterileAR, a computer vision-assisted training program,
shows users flaws in their technique with a combination of
augmented reality and computer vision. [2] It identifies and
tracks IV bags, vials, and syringes and the users relative and
absolute hand positions. The models used in this product were
COCO SSD MobileNet vl and Faster R-CNN. The purpose
was not entirely for accurate identification, but the researchers
commented that they abandoned the use of TensorFlow based
models after several failed attempts to achieve the desired
results. They did, however, achieve fairly good results at
identifying some of the objects in a general sense after moving
to a more traditional OpenCV based approach.

Qi and Lee conducted a study aiming to track objects in
the sterile compounding process in a frame-by-frame fashion.
[1] They preprocessed each frame with a Gaussian filter and
then identified the object via thresholding. Each frame was
compared to the previous frame to determine the borders of the
object. They tracked the objects across the subsequent frames
to “track” them across the workspace. They chose to use the
median flow tracker and discriminate correlation-based filter
tracking from OpenCV. They achieved 84 and 80 tracking
accuracy for single and multi-object tracking respectively.
Their method of object tracking improved the accuracy of
object tracking, 81.66 versus 66.51, but it came with a higher
processing time, approximately 1 second on average.

Eppel, et al. used computer vision to identify and detect
liquid samples in hospitals and labs with a combination of
two neural networks. [3] These networks were arranged in a



cascading manner, with one network responsible for identify-
ing the vessel containing the sample, while the other focused
on recognizing the sample itself. The researchers used a Mask
RCNN object detection net for identifying the vessel and a
FCNN for detecting the samples. They had a good accuracy
rate in identifying the vessels, but struggled with non-liquid
samples such as blood and solids.

III. DATASET

Our data set was images collected during the compounding
process within several hospital sterile compounding suites.
These are obtained by the verification process by a vendor, BD
Pyxis IV Prep. The proper data governance and health system
leadership were notified of this team’s desire to investigate
these images and gave their approval.

We had approximately 4,700 images for this project. The
images contained common sterile compounding items drug
vials, syringes (with and without needles attached), IV diluent
bags, and randomly fluid tubing or baskets.

(a) Normal Saline Bag

(b) Syringe and Vial

Fig. 1. Examples of images used.

It is important to note that the IV bags and drug vials
have labels that are standard and branded according to FDA
and manufacturer guidelines. This standardization could aid
in the applicability of the data set to other similar images
and applications. Of course there are many manufactures who
could produce a certain chemical substance but with sufficient
training it should be possible that the training from our data
is somewhat transferable.

The images used were taken in different sterile compound-
ing environments with different lighting and shadow effects on
the images. This seemed to be a complication to developing
an accurate model but also added some “'noise” that made the
model more robust once our training data got past a certain
threshold.

IV. METHODS

In the course of the literature it became apparent that there
were very little object detection or classification algorithms
used to aid in verification of items used in the sterile com-
pounding process. In addition the publicly available image
data sets did not contain items commonly used in the sterile

compounding process. We decided that it was best to extend
a currently available network to label previously unlabeled
objects for use case that we could not find in the literature.

We used YOLO (You Only Look Once) version 8 to
for object detection and identification. This would not only
leverage publicly available data sets that YOLOv8 has been
trained on, it will also allow us to custom label and train the
model to detect the classes we are interested in. YOLOVS is a
fast accurate network that is relatively easy to use, especially
when compared to R-CNN and F-CNN networks that was used
in the related works we uncovered during our literature review.
YOLO does not have the same flexibility that R-CNN or Faster
R-CNN but makes up for that in fast detection and ease of use.

In our first attempt at object detection we used a pub-
licly available image data set, Common Objects in Context
(COCO). We wanted to investigate if the training weights
could inform the model enough to detect syringe, vials, or bags
for our purposes. [6] It did not identify many of the items in
our data set. It did detect vials but improperly labeled them as
”bottles”. The COCO data set has 1.5 million object instances
but IV bags, drug vials, and syringes are not common enough
to be included. This indicated that our next steps would be to
label our own images.

Fig. 2. Initial Prediction with Trained with COCO Data Set

We then turned to labeling images to train the model on
a custom labeled data set. Even though we started with a
small number of custom labeled images (twenty), the results
were promising. The model was now identifying some of the
classes a majority of the time. The accuracy was not as high
as we would have liked with vials being the only reliable
classification.

We then progressed to labeling 50 images between training,
testing, and validation sets. The model was run for 100 epochs
and accuracy and loss values looked much better. The images
had bounding boxes in roughly the correct place and the labels
were accurate most of the time. The problem we still were



trying to solve was labeling all items in the images with a
bounding box and correct label text.
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Fig. 3. Training with Custom Labeled Data Set with 100 Epochs

Our next step was too increase the labeled data to 200
or more images and train the model again. We augmentation
techniques to increase the number of labeled images and im-
prove the ability of the model to be more generalized. We took
examples of correct classifications and put them back into the
training data. We also wanted to leverage the model we trained
and use it to assist in labeling more images. That proved
to be very useful once we trained the model on more than
200 labeled images. Those additional model-assisted labeled
images boosted accuracy and made the assisted labeling even
better. We continued iterating this approach until we had a
labeled data set of 1,000 images.

V. RESULTS

A. Phase I Results

Phase I results were excellent. The mAP50-95 started in-
creasing with only a few more labeled images for training. As
the number of images increased to 700 and 1,000 the results
continued to improve. As we increased our labeled images
we also started creating more specific labels. For example
bags were now, 0.9% Sodium Chloride Injection, 5% Dextrose
Injection, Exactamix bag, etc. This affected the subsequent
classifications but the final model ended up surpassing the
original models results. This is summarized in Table 1. For
the purposes of a fair comparison over time we average the
mAP50-95 over all the sub classes of bag and vial.

B. Phases II and III Results

We were able to tackle phases II and III concurrently. The
solution for improving the results for each of these phases
were the same steps. We ended up with 40 labled classes and
the summary of the mAP50-95 for the final model are shown
in Table II.

TABLE I
EVOLUTION OF RESULTS (MAP50-95) FOR THE PHASE I CLASSES

Class 20 Images 700 Images at 1,000 Images
and 100 50 Epochs at 100
Epochs Epochs”

bag 0.796 0.6817 0.848™

vial 0.897 0.869™ 0.979"

syringe 0.908 0.88 0.879

needle 0.654 0.772 0.805

* Model Assisted Labeling.
** Changed to more specific classes in future iterations. This represents
the average of all classes of that broader category.

TABLE 11
FINAL MODEL RESULTS (MAP50-95) FOR THE ALL CLASSES

Class Final Model
mAP50-95

0.9% Sodium Chloride Injection 0.766
5% Dextrose Injection 0.747
Arsenic Trioxide 0.895
Azacitidine 0.895
Cyclophosphamide 0.895
Folic Acid 0.995
Iron Sucrose 0.995
Leucovorin Calcium 0.881
Levemir 0.968
Levetiracetam 0.995
Ogivri 0.703
Ondansetron 0.995
Oxaliplatin 0.56
Paclitaxel 0.995
PhaSeal 0.852
Potassium Phosphates 0.995
Sterile Water 0.908
Thiamine HC1 0.955
Vancomycin HCI 0.995
carboplatin 0.995
exactamix bag 0.805
flourouracil 0.995
irinotecan hydrochloride 0.895
needle 0.805
small syringe 0.871
syringe 0.879
vedolizumab 0.995
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Fig. 4. Training Results

VI. DISCUSSION

The results of the first phase of our project are better
illustrated as an evolution of our approach. This learning that
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Fig. 5. Training Confusion Matrix

we gathered throughout the process helped inform our overall
model creation. As we increased our number of labeled images
the accuracy improved across the board for bag, vial, syringe,
and needle. Further optimizations were employed to increase
the accuracy for the other classes.

One of the first optimizations we employed was making
sure the data labels were rotated if the items in the image
were rotated. That provided a better match of the areas of
interest in the image. This improved detection of that class
and the overall accuracy of the model.

From this project the most common indication of the model
accuracy for a given class seems to be directly related to the
number of labeled images in the training set. We used data
augmentation to add more correctly labeled images back into
the training data set. Additionally the variations in lighting
conditions and item position helped to provide a “noise”
and after training make the model more robust. This noise
helped the model recognize new, unseen, items and helped
with detection even if the items are positioned in an strange
or unique way in the image.

Our dataset would be improved by having a small number
of background images to train against, as our training set only
included images with medical objects in the foreground. This
would help our model detect objects in some of the more noisy
environments.

Future directions of study would first start with a larger data
set. Although our model worked well the data we had it would
still need to be tested at scale. Hospital sterile compounding
environments can produce thousands of sterile compounds per
day. It is still unknown if this model would generalize enough
for even more edge cases.

Another area of study that was postulated was deploying a
more robust version of this model in such a way that you can
use a smart phone to do real-time object detection. That would
require formalizing this model into a production ready version
and deploying as an API or mobile application. It could give

end users the ability to use a common object to aid in the
identification of large batches of sterile compounds.
Additional future areas of study would include combining
the object detection with segmentation. The syringes had
very distinct features in the images and when combined with
segmentation of the syringe could help identify or calculate
the percentage of the syringe that contains fluid. If you could
add a verification of the product and the amounts as another
check that would increase the utility of such an approach.

VII. CONCLUSION

The overall results were very good. We successfully trained
an existing model on custom labeled data that had not previ-
ously been classified in the literature. The main indicator for
generating a correct prediction was the number of annotations
for a given class label. We would expect that as we correct
for class imbalance in our dataset, our model’s predictions
would become more robust. Slight variations in the lighting
and item placement added an overall robustness to the model
once we crossed a certain threshold of labeled images. The
model-assisted labeling and increasing the number of correctly
labeled images via data augmentation proved extremely useful
in creating a high quality data set in a short period of time.
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